Relativity as a Consequence of Quantum Entanglement: A Quantum Logic Gate Space Model for the Universe

نویسنده

  • John S. Hamel
چکیده

Everything in the Universe is assumed to be compromised of pure reversible quantum Toffoli gates, including empty space itself. Empty space can be configured into photon or matter gates simply by swapping logic input information with these entities through the phenomenon of quantum mechanical entanglement between photons and empty space Toffoli gates. The essential difference between empty space, photons and matter gates are the logic input values of their respective Toffoli gates. Empty space is characterized by an inability for the logic inputs to influence the internal logic state of its Toffoli gates since the control lines are set to logic 0. Photons and matter are characterized by Toffoli gates where the control lines are set to logic 1 enabling their logic inputs to control their internal logic states allowing for their interaction according to the laws of physics associated with reality. Photons swapping logic input information with empty space results in the propagation of light. Photons facilitating the swapping of information between matter and empty space gates leads to the laws of motion including relativity. This model enables the derivation of many physical laws from purely quantum mechanical considerations including the Heisenberg Uncertainty Principle, the Lorentz transformations of special relativity, and the relationship between relativistic energy and mass. The model provides a possible explanation for many physical phenomena including dark matter, anti-matter, and an inflationary Universe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Design for Two-input XOR Gate in Quantum-dot Cellular Automata

Quantum-dot Cellular Automata (QCA) technology is attractive due to its low power consumption, fast speed and small dimension, therefore, it is a promising alternative to CMOS technology. In QCA, configuration of charges plays the role which is played by current in CMOS. This replacement provides the significant advantages. Additionally, exclusive-or (XOR) gate is a useful building block in man...

متن کامل

A Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata

The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...

متن کامل

Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata

Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...

متن کامل

درهم‌تنیدگی کوانتومی و گذار فاز کوانتومی تحت اتلاف در مدل ناهمسانگرد هایزنبرگ XXZ با برهم‌کنش ژیالوسینکی - موریا

  Because the key issue in quantum information and quantum computing is entanglement, the investigation of the effects of environment, as a source of quantum dissipation, and interaction between environment and system on entanglement and quantum phase transition is important. In this paper, we consider two-qubit system in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii-moriya inter...

متن کامل

Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy

The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009